Anomalous ground state of the electrons in nanoconfined water.
نویسندگان
چکیده
Water confined on the scale of 20 Å, is known to have different transport and thermodynamic properties from that of bulk water, and the proton momentum distribution has recently been shown to have qualitatively different properties from that exhibited in bulk water. The electronic ground state of nanoconfined water must be responsible for these anomalies but has so far not been investigated. We show here for the first time, using x-ray Compton scattering and a computational model, that the ground state configuration of the valence electrons in a particular nanoconfined water system, Nafion, is so different from that of bulk water that the weakly electrostatically interacting molecule model of water is clearly inapplicable. We argue that this is a generic property of nanoconfinement. The present results demonstrate that the electrons, and hence the protons as well, of nanoconfined water are in a distinctly different quantum state from that of bulk water. Biological cell function must make use of the properties of this state and cannot be expected to be described correctly by empirical models based on the weakly interacting molecules model.
منابع مشابه
Quantum Coherence and Temperature Dependence of the Anomalous State of Nanoconfined Water in Carbon Nanotubes.
X-ray Compton scattering measurements of the electron momentum distribution in water confined in both single-walled and double-walled carbon nanotubes (SWNT and DWNT), as a function of temperature and confinement size are presented here together with earlier measurements of the proton momentum distribution in the same systems using neutron Compton scattering. These studies provide a coherent pi...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملDynamic solidification in nanoconfined water films.
Mechanical properties of nanoconfined water layers are still poorly understood and continue to create controversy, despite their importance for biology and nanotechnology. We report on dynamic nanomechanical measurements of water films compressed to a few single molecular layers. We show that the mechanical properties of nanoconfined water layers change significantly with their dynamic state. I...
متن کاملMetal-insulator transition in two-dimensional electron systems
Abstract. The interplay between strong Coulomb interactions and randomness has been a long-standing problem in condensed matter physics. According to the scaling theory of localization, in two-dimensional systems of noninteracting or weakly interacting electrons, the ever-present randomness causes the resistance to rise as the temperature is decreased, leading to an insulating ground state. How...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 111 3 شماره
صفحات -
تاریخ انتشار 2013